A Hierarchical Encoder-Decoder Model for Statistical Parametric Speech Synthesis
نویسندگان
چکیده
Current approaches to statistical parametric speech synthesis using Neural Networks generally require input at the same temporal resolution as the output, typically a frame every 5ms, or in some cases at waveform sampling rate. It is therefore necessary to fabricate highly-redundant frame-level (or samplelevel) linguistic features at the input. This paper proposes the use of a hierarchical encoder-decoder model to perform the sequence-to-sequence regression in a way that takes the input linguistic features at their original timescales, and preserves the relationships between words, syllables and phones. The proposed model is designed to make more effective use of suprasegmental features than conventional architectures, as well as being computationally efficient. Experiments were conducted on prosodically-varied audiobook material because the use of supra-segmental features is thought to be particularly important in this case. Both objective measures and results from subjective listening tests, which asked listeners to focus on prosody, show that the proposed method performs significantly better than a conventional architecture that requires the linguistic input to be at the acoustic frame rate. We provide code and a recipe to enable our system to be reproduced using the Merlin toolkit.
منابع مشابه
Articulatory Features and Associated Production Models in Statistical Speech Recognition
A statistical approach to speech recognition is outlined which draws close parallel with closed-loop human speech communication schematized as a joint process of encoding and decoding of linguistic messages. The encoder consists of the symbolically-valued overlapping articulatory feature model and of its interface to a nonlinear task-dynamic model of speech production. A general speech recogniz...
متن کاملStatistical Parametric Speech Synthesis Using Bottleneck Representation From Sequence Auto-encoder
In this paper, we describe a statistical parametric speech synthesis approach with unit-level acoustic representation. In conventional deep neural network based speech synthesis, the input text features are repeated for the entire duration of phoneme for mapping text and speech parameters. This mapping is learnt at the frame-level which is the de-facto acoustic representation. However much of t...
متن کاملAutomatic Video Captioning using Deep Neural Network
Video understanding has become increasingly important as surveillance, social, and informational videos weave themselves into our everyday lives. Video captioning offers a simple way to summarize, index, and search the data. Most video captioning models utilize a video encoder and captioning decoder framework. Hierarchical encoders can abstractly capture clip level temporal features to represen...
متن کاملParametric Audio Coding
For very low bit rate audio coding applications in mobile communications or on the internet, parametric audio coding has evolved as a technique complementing the more traditional approaches. These are transform codecs originally designed for achieving CDlike quality on one hand, and specialized speech codecs on the other hand. Both of these techniques usually represent the audio signal waveform...
متن کاملStudy on Unit-Selection and Statistical Parametric Speech Synthesis Techniques
One of the interesting topics on multimedia domain is concerned with empowering computer in order to speech production. Speech synthesis is granting human abilities to the computer for speech production. Data-based approach and process-based approach are the two main approaches on speech synthesis. Each approach has its varied challenges. Unit-selection speech synthesis and statistical parametr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017